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ABSTRACT

We construct a probability model seemingly unrelated to the considered
stochastic process of coagulation and fragmentation. By proving for this
model the local limit theorem, we establish the asymptotic formula for the
partition function of the equilibrium measure for a wide class of param-
eter functions of the process. This formula proves the conjecture stated
in [5] for the above class of processes. The method used goes back to
A. Khintchine.

1. Introduction and summary

The motivation for our research came from a conjecture stated in [5], p. 462, in
the following setting.
For a given integer IV, denote by

N
(1.1) n=(m,...,nN):0<ng <N, Y kng=N
k=1
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a partition of N into ny groups of size k, k = 1,2,..., N and by Qn = {n} the
set of all partitions of N.
We will be interested in the particular probability measure p on Qp given by

ny  ng nN
arlay® .. .ay

(1.2) pn(n) =Cn , n={(ng...,ny) € Qn,

nilng!. .. nn!
where a > 0,k =1,2,...,Nand Cy = Cn(a1,...,ay) is the partition function
of the distribution pupy:
(1.3)

ny N2

nN
R -1 ay Gy° ...4pN
en=Cxpl= Y LN o (ny,...,nN)€Qn, N=12,...
no! !
n1:nat... NN
n€ENN

The probability measure py is the equilibrium state of a class of reversible
coagulation—fragmentation processes (CFP’s)(see [5] for references).

CFP’s trace their history from Smoluchowski (1916) and they have been in-
tensively studied since this date. The process models the stochastic evolution
in time of a population of N particles distributed into groups that coagulate
and fragment at different rates. The model arises in different contexts of appli-
cation: polymer kinetics, astrophysics, aerosols, biological phenomena such as
animal grouping, blood cell aggregation, etc. Observe that particular choices of
ag, k = 1,2,...,N in (1.2) lead to a variety of known stochastic models. For
example, when a, = 8/k, k =1,2,...,N, 8 > 0, (1.2) becomes the widely known
Ewens sampling formula that arises in population genetics.

Following [5], we view CFP as a continuous-time Markov process on the
state space Quy. Formally, a CFP is given by the rates ¥ and ¢ of the two
possible transitions: coagulation and fragmentation respectively. Namely,
¥(i,5), 2 < i+ j < N is the rate of merging of two groups of sizes 7 and j
into one group of size ¢ + j, and ¢(i,7), 2 < i+ j < N is the rate of splitting of
a group of size ¢ + j into two groups of sizes ¢ and j. We consider the class of
CFP’s for which the ratio of the transition rates has the form

1/)(27.7) Ay j .. . .
1.4 ——L=— 4,j:2<i4+j<N,
( ) ¢(Z,]) A, 0y ’
where a > 0,k =1,..., N are given parameters of the process. Owing to (1.4},

the condition of detailed balance holds and, consequently, the CFP considered is
reversible with respect to the invariant measure (1.2).

Letting N — oo, we will be concerned with the relationship between two
infinite sequences {a,}$° and {c,}§°, co = 1.
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It was conjectured in [5]* that the existence of the limit

(1.5) lim >0
n—o0 an+1

implies the existence of the limit

(1.6) lim > 0.

n—oo Cn+1

Apart from the fact that the conjecture is a challenging mathematical problem,
one can see from [5] that it also has a direct significance for the stochastic model
in question. First, if the limit (1.6) exists, then a variety of functionals of the
process (e.g., the expected values and variances of finite group sizes), as N — oo,
can be explicitly expressed via this limit. Next, by formula (4.16) in [5] we have
that

(1.7) cov(ng, ny) = a(k)a(l) (CNC—:—I _ CN(—CI;VC)I\2I—1> )

k#£1=12,...,.N, k+I<N.

Thus, the validity of the conjecture will imply that at the steady state the
random variables ng,n;, k # | become uncorrelated, as N — oo. This fact
incorporates into the assumption of independence of sites in mean-field models,
as N — oo, that is commonly accepted in statistical physics.

Another motivation for our study is provided by a quite different field, known
as random combinatorial structures (RCS’s). The connection of CFP’s to this
field is based on the following observation made in [5]. Let Z,, i = 1,...,N
be independent Poisson random variables with respective means a; > 0, i =
1,...,N. Then it is easy to see that the distribution py admits the following
representation:

N
(1.8) pn(n) =Pr{Z1=ny,...,Zy =ny|) _iZ, = N},

1=1
n= (nlv'-'vnN) € Qn.

It turns out that (1.8) is the general form of distributions arising in a variety
of RCS’s. This is explained in [1], [2] and [11]. (Theorem 1, p. 96 in [1] gives
a rigorous proof of this fact.) The simplest example of a RCS is a random

* Added in proofs: The conjecture was recently proved in the setting of general
additive number systems by J. Ball and S. Burris in Asymptotics for Logical
Limit Laws, preprint, 2001.
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choice from N! permutations of N objects. Cauchy’s formula for the number of
permutations having ny cycles of length k, k = 1,..., N, where 211;!:1 kngy = N,
tells us that the probability of picking a permutation with this property is given
by (1.2) withax =k~ !, k=1,...,N and Cy = 1.

In view of this, one can translate the preceding reasoning in the context of the
Conjecture, into the language of RCS’s.

Our paper is devoted exclusively to the study of the asymptotic behaviour, as
n — 00, of the quantity ¢, defined by (1.3).

The asymptotic formula for ¢, established in our paper proves the Conjecture
for a wide class of parameter functions a: a(k) = ag, £ = 1,2,.... We mention
also two other applications of our result related to global characteristics of CFP’s
(=RCS’s).

(i) For a given n, denote by v, the mean value of the total number of different
groups at the equilibrium of CFP (=components in a RCS). It follows from (4.15)
in [5] that

n

(1.9) Up = Z ap =k

C
k=1 n

(ii) Denote by p, the probability at the steady state of the creation of a cluster
(= component in a RCS) of infinite size. It was shown in [5], p. 462, that the
condition
(1.10) lim (vp, — Vjgnj—1) > 0

n—00
for some 0 < a < 1 is sufficient for p, > 0. (Here [o] is the integer part of a
number.)

Thus, with the help of the asymptotic formula for ¢, , one can reveal the asymp-
totic behaviour of v, as n — oc and, consequently, find the limit in (1.10). The
latter will answer a question which is common in statistical physics.

Also, we want to point out that determining the asymptotic properties of
partition functions for interacting particle systems is a difficult mathematical
problem widely discussed in statistical physics (see, e.g., {15]).

2. Description of the method and a sketch of its history

We assume a, > 0, n =1,2,... and that the following limit exists:

(2.11) lim —" .= R, 0<R< .

n—00 an+1
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Thus the power series in x,
o0

(2.12) S(z) = apz",
n=1

has radius of convergence R and it converges in the complex domain
D C {|z| < R}.

Then (see [5)), g(z) = 5@, x € D is the generating function for the sequence
{cn} defined by (1.3). Namely,

o0
(2.13) g{z) = 3@ = Z cnx™, T €D,
n=0

and, moreover, the series (2.12) and (2.13) converge in the same domain D.

The method we use here for deriving the asymptotic formula for ¢, goes back
to A. Khintchine’s pioneering monograph [10]. In [10] Khintchine developed the
idea of expressing values of quantum statistics via the probability function of
a sum of correspondingly constructed independent integer-valued random vari-
ables. Subsequent implementation of the local limit theorem resulted in the
method of the derivation of asymptotic distributions of quantum statistics. In
[10] this method was systematically applied to systems of photons and some other
models. The method was further developed by A. Postnikov and G. Freiman (see
[14] for references) who applied it to analytic number theory. In particular, G.
Freiman formulated a local limit theorem for some asymptotic problems related
to partitions. A general scheme for the derivation of asymptotic formulae for
these kind of problems was outlined by G. Freiman and J. Pitman in [8], [7] (see
also [4] for references.)

A similar approach, also based on the implementation of the local limit the-
orem, has been developed independently for the last fifteen years in the theory
of RCS’s. A very good exposition of this direction of research is given in the
recent monograph [11] by V. Kolchin. We will explain briefly the basic difference
between the problem addressed in the present paper and those in [11]. In the
context of the generalized scheme of allocation that encompasses a variety of
RCS’s, S and g are the generating functions for, respectively, the total number
of combinatorial objects of size n and for the number of such objects possess-
ing a definite property. In this setting it is assumed that the expression for the
function g is known explicitly. Based on this, the combinatorial quantity in ques-
tion is expressed via the probability function of a sum of i.i.d. discrete random
variables, distributed according to a probability law that depends on the given
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values of {¢,}$°. Such a scheme is applicable, for example, to the investigation
of the asymptotic of the number F}, y of all forests of N nonrooted trees having
n vertices, in which case ¢, = (n!)"n""2, n=1,2,....

First, w.l.o.g. we assume throughout the paper that the common radius of
convergence of the series (2.12) and (2.13) equals 1. This is due to the fact that
taking in (1.3) a; = Rjaj, j=1,...,N, it follows from (1.1) that éy = RNcn.
The above assumption makes the lim, o (Gn/ant1), if it exists, equal to 1.

Our starting point is the following representation of c,.

LEMMA 1:
°° —lko+2mialk
(2.14) =e" / (Z afe ) x e~y n=1,2,...
0 = k=0
for any real o.
Proof: 1t follows from (1.3) that ¢, depends only on ay,...,a,, which means

that the first n + 1 terms of the Taylor series expansions of the two functions
(2.15) g(x) =e5® and gn(x):= 2tz “‘””l, zeD

are the same, ie., ¢xg = ¢xn, K = 0,...,n, where {cg,}52, is the sequence
related to the function g,. For a fixed n, the series expansion of the function
gn(z) converges for all z. So, we can set

(2.16) z = e oTimia

for some real ¢ and o.
Then we have

1 1 0o
(2.17) / gn(z)e ™o = / (Z Ck,ne_”k“’”“(k'")) da = cpe™™7.
0 0

k=0

The last equality is due to the fact that

! 1, ifm=0
2miam — ’ — Y
(2.18) ‘Ae m‘{m ifm£0, meL

Finally, substituting

. n (0 bk
(2.19) gn(@) = [Je** =] (Z ( lk!) >

and (2.16) in the LHS of (2.17) we get the claim. ]
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Our next step will be to give a probabilistic meaning to the expression (2.14)
for c,,.

We introduce the following notations:

n
(2.20) Sn(z) = Zale,
=1
ake—alk
2. = _ ___ 1=1,... k=0,1,...,
( 21) Dix k.’exp(a;e“”) ) 11 I,
(2.22) wi(a) = Zplkez"mlk, a € R,
k=0
n
(2:23) ola)=[[ (@), acRr.
=1

Now (2.14) can be rewritten as
-0 1 .
(224) Cn = enoeSn(e )/ (p(a)e—%rzanda‘
0

The fact that for a given ! (1 <1< n), p, k= 0,1,... is a Poisson probability
function with parameter a;e~?', suggests the following probabilistic interpreta-
tion of the integral in the RHS of (2.24).

Let Xy,..., X, be independent integer-valued random variables defined by
(2.25) PI‘(Xlzlk)-:pzk, l=1,...,n, k)=0,1,....

Then () defined above is the characteristic function of the sum ¥ = Xy +
-+ 4+ X, and we have

1
(2.26) / pla)e 7™ dq = Pr(Y = n).
0

Now (2.24) can be viewed as an analog of the aforementioned Khintchine
representation for c¢,,.

It is well-known [9] from the classical theory of limit distributions of sums of
independent integer-valued random variables that, under certain conditions on
distributions of the variables, a local limit theorem is valid.

In our subsequent study, the free parameter o will be taken depending on
n: 0 = op. By (2.25) and (2.21) this means that the probability law of each of
the n random variables X;, I = 1,2,...,n depends on n. Therefore, to compare
with the classical case, we will be dealing here with a triangular array of random
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variables. For this case, general necessary and sufficient conditions for validity of
the local limit theorem are not known. For some cases results in this direction
were obtained in [13] and [3]. In the first of these two papers a sufficient condition
was established (see ([13], Theorem 2, condition III) in the case of an array of
general lattice random variables. It can be verified that this condition (which
can be viewed as a version of the celebrated condition of asymptotic uniformity)
fails for the class of parameter functions a considered in our paper. The second
paper studies exclusively the case of the triangular array of trinomial random
variables.

Most of this paper is devoted to the proof of the local limit theorem in the
above setting. Namely, we will demonstrate that under certain conditions on the
parameter function a

(2.27) Pr(Y =n) ~ (27!'3721)—1/26—(1”"_”)2/23’2‘, as n — 00,

where M,, = EY and B2 = VarY.

3. Proof of the local limit theorem

In order to prove (2.27) we have to find the asymptotic formula, as n — oo, for
the integral in the RHS of (2.24). We will denote constants in the sequel by ~, i,
i=1,2,....

First, we obtain the explicit expressions for the quantities M,, and B2. Expres-
sions (2.25) and (2.21) say that [71X;, | = 1,..., are Poisson (a;e~°") random
variables. So, we have

(3.28) EX, = lale—"l, l=1,...,n,
(3.29) Var X; = Page™, 1=1,...,n.
This gives
(3.30) My =) lae™™, n=12,...,
=1
n
(3.31) B=> Pae™, n=1,2,....
1=1

It follows from the preceding discussion that the representation (2.24) holds for
any real o. Our next result shows that o can be chosen so that the exponential
factor in the RHS of (2.27) equals 1, for any n =1,2,....
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LEMMA 2: The equation
n

(3.32) Zlale_"’ =n
=1

has a unique solution ¢ = o, foranyn =1,2,.. ..

Proof: The assertion follows immediately from the assumption a; > 0, | =
1,2,... ]

Remark: The above choice of the free parameter o makes the probability of the
event {Y = n} large, as n — co. The same idea is widely used for approximation
of RCS’s by independent processes (see [1] for references). In statistical physics,
such a way of choosing a free parameter for estimating averages is known as the
Darwin-Fawler method developed in the 1930’s (see, e.g., [6] for references).

It follows from (3.32) that if the series Zfillal converges, then g, < 0 for
sufficiently large n, while in the opposite case the sign of o,, depends on the
behaviour of S;(l), as n — oo. However, in both cases the following basic
property of o,,, n =1,2,... holds.

LEMMA 3: Let

(3.33) lim =1

Then lim,, _, o, 0, = 0.

Proof: By the definition of o,
n

(3.34) n~t Zlale_l"" =1, n=1,2,....
1=1

Denote by = la; > 0,1 =1,2.... Based on (3.33) let N = N(¢), where ¢ > 0 is
such that

b
(3.35) 1—e§l—b+l§1—|-e, for alll > N.
!
Consequently,
(3.36) (1-e Moy <b<(1+¢"Nby, I>N.

Now suppose that limg_,o, 0, = o, for some subsequence np — +oo, as
k — 0o, where |o] < 0o. Let first —0o < ¢ < 0; then taking 0 < € < 1 —e?/2 we
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have
N Nk

(3.37) n;! Zble‘l""k > (1-¢) Noyng! Z[(l —€)e 7]l = 00, as k — oo
=1 =N

since

(1—€)e % >e?/2 7% 579251, ask — oo

If now 0 < o < 00, then for 0 < € < e7/2 — 1,

ng N Nk
n;t Z bt <n;t ( Z bie™ + (1 +¢€) Nby Z((l +€)e” T )’) — 0,

=1 =1 I=N
(3.38) as k — oo,

since in this case e"?/2 < 1. Both (3.37) and (3.38) contradict (3.34), which
implies that limsup,,_, ., on = liminf, , 0, = 0. |

In what follows we will assume that o = o, as defined by (3.32). Our next
lemma provides the expression for the integrand in the LHS of (2.26) for small
values of a.

LEMMA 4: For a fixed n and 0 = oy,
(3.39) p(a)e™ ™ = exp(—2n%a® B2 + O(a®p3)), asa— 0,
where p3 = p3(n) = Y, Bae™» , n=1,2,.

Proof: By (2.21)—(2.23),

1 2mal k

00 -
ale n
(340)  @ia E

—lo 2niald
= exp(aje™ " - 1)), €R
— “klexp(aie—ton) xp(a (e ), «a

and

n

(3.41) pla) = exp(Z ae”lon (g2 1)), a € R.

=1

Finally, substituting in (3.41) the Taylor expansion (in @)
(3.42) e?™el _ 1 = 2rial — 272012 + O(a®1%), asa — 0,

which holds uniformly for I > 1, and making use of the definition (3.32) of oy,
proves (3.39).
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Observe that uniformity (=the constant implied by the term O(a313) in (3.42)
does not depend on ) is due to the fact that for any real o,

2mial

<(@2m)®®, s=1,2,.... 1

dS
—e
l da?®
Now we are prepared to deal with the central objective stated in the beginning
of this section. Denote

1
(3.43) T=T(n)= / pla)e™ ™M dq, n=1,2....
0

The integrand in (3.43) is periodic with period 1. So for any 0 < ap < 1/2,
the integral T' can be written as

(3.44) T=T +T,

where T7 = T1(ag; n) and Ty = Ta(ap; n) are integrals of the integrand in (3.43)
over the sets [—ao, +ao] and [-1/2, —~ayp] U [y, 1/2], respectively. Following the
idea of [7], [8], we will first show that for an appropriate choice of oy = ap(n) the
main contribution to T, as n — 0o, comes from T7. Then, estimating 77, under
ag = ag(n), n — oo we will get the desired asymptotic formula (2.27).

It is clear from Lemma 4 that the asymptotic behaviour of the integral T; as
n — oo is determined by the asymptotics of the three key parameters o,,, B2
and ps.

First, we address the problem for the class of parameter functions a of the form

(3.45) a, =471, j=1,2,... fora givenp > 0.

It follows from the definition of the above three parameters that in the case con-
sidered the problem reduces to the estimation of sums of the form Z;l:l j*e=I
k>-1,asn— oc.

b

To do this we apply the integral test for the function
(3.46) fu) = (ouw)ke ", u>0, o0>0, k>-1.

In the case k > 0 the function f is strictly increasing on [0, ko] and is strictly
decreasing on [ko~!,+00). So, applying the integral test separately on each of
the above intervals we have in the case considered

a1 [ s nfGo ) 10 < [ Wdutafo™),
j=1
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where the constants 1,72 depend on k only and f(ko~!) = kFek.
If now —1 < k < 0, then the function f is strictly decreasing on [0; +0c) and
the integral test gives

n+1 n n
(3.48) [ w16 < [ e
j=1 0

Note also that for any o, b > 0

(3.49) / fu)du = Uk/ uPeUdu = 0”1/ ke %dz.
b b b

T
Then, combining (3.46)-(3.49) we arrive at the desired asymptotic estimate:

n

k,—o3 ., _’7_ o s
(3.50) le e Tl 0<o—-0, n—ooo, and hnn_ligfna > 0.
]:

In particular, if no — oo, then the constant v in (3.50) can be found explicitly:

n
% —oi Tlk+1
(3.51) D gtem ‘[,Wl—)
i=1

where I' is the gamma function.

Further, we will write e(n) =< n® if there exist positive constants v, 72, s.t.
1n® < o(n) < yon®, for all sufficiently large n.

Extending (3.45) we consider now the class of functions a satisfying

(3.52) a; < 7?71, asj— oo for a given p > 0.

An obvious variation of the preceding argument gives in this case the following
analog of (3.50):
(3.53)

n

. ; 1 ..
E a]jle_‘”x—l, as0<o—0,n—o0 and liminfrne >0, [>0.
. oPb+ n—00
J:

This immediately implies

LEMMA 5: Let the function a obey (3.52). Then, as n — oo,

(3_54) Op = n~ Y (P+1)
(3.55) BrZL = pP+2)/(p+1)
and

(3.56) ps = n@+3)/(p+1)
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Proof: By the definition of ¢, Lemma 3 and {3.53), in this case

(3.57) n < o!%f’ as n — 00
and, consequently,

(3.58) on xn YO a5 n 5 o0
Now the last two assertions follow from (3.53). 1

At this point we are prepared to estimate the integral
a0

(3.59) Ty =Ti(og;n) = / ola)e~r™endqy,

—ao
LEMMA 6: Let the function a obey (3.52) and ag = o7/ 2 1ogn, p> 0. Then

(3.60) Ti(ag;n) ~ (20B2)™Y2 asn — oco.

Proof: By (3.54), ag — 0, as n — oo. So, making use of (3.39) we obtain
ap

(3.61) T, = / exp(—2720® B2 + O(a®p3))da, as n — .
—ao

Further, under the condition (3.52), it follows from Lemma 5 that the above
choice of g provides the following two basic relationships between the parameters
B2 and ps:

(3.62) Jim alB? = Jim log?n = +o0
and
(3.63) lim adps = Jim 0P/ log¥n = 0.

Since lim, o a®p3 = 0 for all a € [—ay, @), (3.61) and (3.62) imply

ag 1 2nag By,
Ty ~ / exp (—2n2a®B2) da = / exp(—2%/2)dz
—ag 27an —2rapB,

(3.64) ~1/y/27B2, asn—oo. 1

Taking aq as in Lemma 6, we write

(3.65) Ty =Ty, + 1o,
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where

1/2 ,
(3.66) To1 = Ta1(ag;n) = / cp(a)e_z"“’"da
Q

0

and T» o is the integral of the same integrand, but over the set [—1/2, a].

In view of (3.65) and the fact that p(—a) = ¢(a), a € R, the rest of this
section is devoted to an estimation of the integral T3 1, as n — oo. Our starting
argument will be the same as in [8]. It follows from (3.41) that

(3.67) lp(a)} = exp( - 2Zaje‘j”" sin® ﬂaj), a € R.
j=1

Denote by [z] and {z} respectively the integer and fractional parts of a real
number z, and by ||z|| the distance from z to the nearest integer, so that

(3.68) |zl = {i_}{x}, if {z} > 1?2.

We will make use of the inequality

(3.69) sinf > %9, 0<6<

Since sin® 7z = sin? z||z|| for any real z, it follows from (3.69) and (3.68) that
for all real z,

(3.70) sin® 7z > 4||z||%.

Hence, in view of (3.67) and (3.66) we have to estimate the sum
(3.71) Va(@) =) ae?"[|laj]l?, ap<a<1/2
=1

LEMMA 7: Let the function a obey (3.52). Then
(3.72) Vo(a) > v log?n, o€ [a,1/2], asn— oo,
where v > 0.

Proof: Take a; = ai(n) = o, > ap(n), as n — oo, and split the interval
[v0;1/2] into two disjoint subintervals I := [, a1] and I := (a1,1/2]. We plan
to prove the assertion separately for ¢ € I; and o € I,
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INTERVAL I;. It is clear from the definition (3.68) that
(3.73) legll = aj, §<1/200, a€l.

In view of the fact that, by Lemma 3, (2a7)~! — 00, as n — oo, while (a1) " loy, =
1,n=1,2,..., we apply (3.53) with [ = 2 to obtain

(3.74) Va(a) > o Z a,j2e9" < a2 /abt? =log’n, a€l.
1<j<(2a1)7?

INTERVAL I5. For a given integer n and a given a € I, define the set of integers
Qe) = Qasn) = {1 < j < n: |lajl| 2 1/4}.
It is clear that

Qa)={1<j<n:k+1/4<aj<k+3/4, k=0,1,...,}

(3.75) [(4an—3)/4]
= U @,
k=0
where Q(a) denotes the set of integers {j : (4k + 1)/4a < j < (4k + 3)/4a}.
Observe that for any @ € I and k > 0 the set Qx(a) is not empty, since in
this case (4k + 3)/4a — (4k + 1)/4a > 1.
This yields the following estimate of the sum V, (o), a € I:

[(4an—3)/4]
(3.76) Va(@) >1/16 Y ae?r=1/16 Y Y ajeton
J€EQ(x) k=0  j€Qx(a)

We now assume that the asymptotic inequality (3.52) holds for all j > N. This
means that (3.52) is valid for all j € Qk() whenever & > max{0; (4aN — 1)/4}
=: K{(a).

We agree, with an obvious abuse of notation, that for a real u, Q,(«) is the
interval

[4u +1 4du+ 3]
4o ' 4o 17
Observe that for all sufficiently large n, we have 0 < o~ lo,, < 1, a € I, while
no, — 00.
Applying now the integral test to the double sum in the RHS of (3.76) gives

(4an-3)/4
Vola) > 'y/ du/ VP~ le™vn dy
K(a) vEQu(a)
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1 (4an—-3)/4
=7 du/ v? e Vdy
On JK(a) vE(0n Qu(a))

1 nop—0op/2a av/o,—1/4
> 7= v”'le’”dv/ du

on Ki(a) av/a,—3/4
(3.77) = a—l,’:’ p>0, asn - oo,
where we denote
4K (a)+ 3

Ki(a) = o, and o,(Qu(a)) = [an

qu+1 4u+3]

4o 4o In 4o

Note that the last inequality in (3.77) is obtained via the change of the order of
integration. Finally, (3.77), (3.54) and (3.74) prove the claim. |

The last statement of this section is the desired local limit theorem.

THEOREM 1: Let the function a obey (3.52). Then

(3.78) T=Pr(Y =n)~1/\/2nB2, asn— 0.
Proof: By Lemma 7 and (3.66), (3.67) and (3.65), we have
(3.79) T < e“27l°g2", as n — 00,

where v > 0. In view of (3.64) and (3.44) this proves (3.78). ]

We provide now an extension of the field of validity of the above local limit
theorem. We agree to write n®t < e(n) < nf2, 0 < B < Ba, if there exist positive
constants 1,7z, s.t. 1Pt < o(n) < 902 for all sufficiently large n.

For given 0 < p; < p; define the set F(py, p2) of parameter functions a = a(j),
j € R*, obeying (3.33) and the condition

(3.80) P =a(f) 7Y 0<pr<po.

COROLLARY 1: For an arbitrary p > 0 and 0 < ¢ < p/3 the local limit theorem
(3.78) is valid for all parameter functions a € F(2p/3 + ¢;p).

Proof: 1t is clear from the preceding results that for all a € F{py; p2), we must
have, as n — oo,

(3.81) n~V(pt+l) <op < p~ V(P21

U;(P1+2) < Bi =< 0-;(172+2)’ 0;(P1+3) < p3 =< 0;(172+3).
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Therefore setting, as in Lemma 6, ag = (B,,) " !logn, gives
(3.82)
adps < v3(log® n)o, 3P/ 25— P243) — ~i(1og® n)oPP1=2P2)/2 0, asn — oo,

provided 3p; — 2ps > 0.

Thus, in the case a € F(p1;p2), where p1,p2 : 3p1/2 > p2 > p; > 0, Lemma 6
is valid. The proof of Lemma 7 for this case goes along the same lines, with an
obvious replacement of (3.77) by

(3.83) 1/oP' < V,(a) X 1/0F?, a €I,

Combining these results proves the validity of the local limit theorem for the
class of functions e in our statement. |

For our subsequent study we will need the following extension of (3.78).
COROLLARY 2: Under the conditions of Corollary 1,
(3.84) Pr(Y =n+h) ~Pr(Y =n) ~1/y/2rB2, asn — oo,

for a fixed real h.

Proof: By (2.26),
- 1/2
(385) T(h, n) = Pr(Y =n+ h) — / (p(a)e—Z‘ma(n+h)da,
-1/2
where the characteristic function ¢(«) is given by (2.22) and (2.23). By Lemma
4, we get

(3.86) @(a)e 2manth) — oxp (-2n%a?B2 — 2miah + O(a%p3)), as o — 0,

where p3 is defined as in (3.39). Next, let ag = ag(n) be as in Lemma 6. Denote

- Qg
(3.87) T1(h;n) :/ o(a)e~2men+h) 4o

—ag

Lemma 6 and (3.86) imply for a fixed h € R
(3.88) Ti(h;n) ~ 1//27B2, asn — cc.

Now it is left to estimate the integral
1/2 —Qo

(p(a)e-—27rm(n+h)da + / (p(a)e—%”'a("‘f'h)da'
—1/2

(3.89) To(h;n) := /

0
Since the function ¢(«a) here is the same as in (3.67), the estimate (3.79) is valid
also for T5(h; n), which together with (3.88) proves the statement. 1
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4. The asymptotic formula for ¢,

By virtue of (2.24) and Corollary 1, we obtain the following asymptotic formula
for c,, valid for all parameter functions a € F(2p/3 +€;p), p > 0, € > 0:

1 n
~N —_—— —J0n

(4.90) Cn TR exp <nan + ];1 ae ), as n — oo.

Example: Let a; =< 71, p > 0, as j = oo. Then by Lemma 5, (3.53) and

(4.90),

p+2
2p+2

1
(4.91) log ¢, =< 2nP/(P+1) _ 5 log 27 —

In particular, if a; = j#7!, p > 0, j = 1,2,..., then using (3.51), the constants
in (3.54) and (3.55) can be found explicitly and we obtain, as n — oo,

n -1/(p+1)
(492) Op ~ ('f‘m) s
(p+2)/(p+1)
. B2o (D T(p+2
(4.93) i~ (tp5D) (p+2),

(4.94) noy, ~ (T(p 4 1))/ ®+1),

1/(1>+1)
(4.95) Za]e jon  T'(p )(F(p+ 1)) p~ L (D(p + 1))/ P+ pp/p 1)

Hence, (4.90) gives, as n — 00,

p+2
2p+2

1
(4.96)  logcn ~A(p)n?/ @D 5 log 2m — (logn —logT'(p + 1))

logI'(p + 2),

NJIo—l

where A(p) = (1 +p~1)(T(p + 1))/ P+1),

Remark: For the two cases a; = const and a; = j, j = 1,2,... the first (= the
principal) term in the asymptotic formula (4.96) was obtained in [5] by solving
for large n the corresponding difference equations (4.101) below. Note that this
approach is not applicable even for the class of parameter functions a; = j7~1,
p>0.

With the help of (4.90) we are able to address the question on the validity of
the Conjecture stated in Section 1 (see (1.5) and (1.6)).
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ASsERTION: The conjecture is valid for all parameter functions a € F (%‘3 +¢;p),
p>0,e>0.

Proof: 1t is clear from (1.3) that the expression for ¢,y can be written in the
following way:

(497) Cn+1 = Ap41 + En+17

where ¢,41 can be viewed as the value of ¢, 41 (given by (1.3)) when a, 4 = 0.
Next, recall that the representation (2.24) is true for any real ¢ and all n =
1,2,.... We now apply this representation for the particular case an41 = 0. By
(2.21) and (2.25), in this case Pr(X,+; = 0) = 1. So, combining (2.24) and (2.26)
and taking ¢ = o,, gives

n
(4.98) Cn+1 = €Xp ((n + l)op + Z aje_j""> Pr(Y =n+1),
=1
where the random variable Y is defined as in Section 2.
Substituting expression (4.98) in (4.97) and applying (4.90) and Corollary 2,
we obtain

Cn41 An41
(4.99) 2 e 4+ 2 asn o oo,
Cn Cn

In view of the assumption (3.33) and Lemma 3, to complete the proof we have
to show that

(4.100) lim =" = 0.

To get this result we will implement the difference equation (see [5], p. 460 for
references) derived from (2.13):

=1, c1=ay,

n
(4.101) (n+1)cnr1 = (G +1Daje1cnj, n=12,...
j=0

This gives, for a fixed k > 1,

(4.102) Cntl zn: G+ 185110

An41 - J=n—k ('n' + 1)an+1

Consequently, by (3.33) and (4.97)

(4.103) liminf(clm'1 >ttt >1+ar+--+ag,
n+1
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for any fixed k.
The desired conclusion now follows from the fact that if a € F(2p/3 + ¢;p)
p>0,e>0, then

o0
(4.104) d aj=co. B
j=1

CoNcLUDING REMARK. Our asymptotic formula (4.90) is restricted to the case
a € F(2p/3+¢p), p > 0, € > 0. The reason we require p > 0 comes from the
fact that the local limit theorem we proved assumes convergence to the normal
law only. This type of convergence is guaranteed if (3.62) and (3.63) hold, or,
equivalently, if the parameters ps and B,, obey the condition

. P3
4.1 lim = =
(4.105) im B

Based on the reasoning preceding (3.28), it is not difficult to show that the
quantity ps has the following meaning:

(4.106) ps = i E(X; - EX))3.

=1
In effect, denoting by U; the Poisson (); := aje~°") random variable, we have
(4.107) E(X; - EX))® = BPE({U, - EU,)® = I3\,

where the last step is due to the known property of the third central moment of
the Poisson distribution (see, e.g., [12], p. 33).

Expression (4.106) explains that (4.105) is Lyapunov’s sufficient condition for
convergence to the normal law in the central limit theorem. To demonstrate that
for p < 0 the condition (4.105) fails, we consider the case a; = j~1, j =1,2,....
It is easy to see from (3.32) that for this case o, =0, n = 1,2.... Consequently,
we have, as n — 0o, B2 ~ n? and pz ~ n®, which gives lim,_,,(p3/B2) = 1.

The above discussion suggests that for p < 0 one can expect convergence to
other stable laws. The study of this case will require a quite different estimation
technique.
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