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ABSTRACT 

We cons t ruc t  a probabil i ty model  seemingly unre la ted  to the  considered 

s tochast ic  process of coagulat ion and  f ragmenta t ion .  By proving for this  

model  the  local limit theorem,  we establ ish the  a sympto t i c  formula  for the  

par t i t ion  funct ion  of the  equi l ibr ium measu re  for a wide class of  pa ram-  

eter funct ions  of the  process.  This  formula  proves the  conjecture  s t a ted  

in [5] for the  above class of processes.  T he  m e t h o d  used goes back to 

A. Khintchine .  

1. I n t r o d u c t i o n  and  s u m m a r y  

The motivation for our research came from a conjecture stated in [5], p. 462, in 

the following setting. 

For a given integer N, denote by 

(1.1) ~ = ( n l , . . . , n N )  : 0 < nk <_ N,  
N 

E knk = N 
k=l 
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a partition of N into n k groups of size k, k = 1, 2 , . . . ,  N and by ~ N  ---- {77) the 

set of all partitions of N. 

We will be interested in the particular probability measure # on ~N given by 

(1.2) 
~1 r~2 rsN 

ltN(~]) : C N  al  a2 . . . a  N 
nt!n2------[.:::nN---~. ' ~ ---- ( n l , . . . , n N )  �9 ~ N ,  

where ak > 0, k = 1, 2 , . . . ,  N and C N  = C g ( a t , . . . ,  aN)  is the partition function 

of the distribution #N: 

(1.3) 
nl r~ 2 ~tN 

CY : :  CN1 = E a l  a2 "':a--g-g ~] : ( h i ' " "  /tN) e a N ,  N = 1 , 2 , .  
UE~N nl !n2!  . a N ! '  ' "'" 

The probability measure #N is the equilibrium state of a class of reversible 

coagulation fragmentation processes (CFP's)(see [5] for references). 

CFP's  trace their history from Smoluchowski (1916) and they have been in- 

tensively studied since this date. The process models the stochastic evolution 

in time of a population of N particles distributed into groups that coagulate 

and fragment at different rates. The model arises in different contexts of appli- 

cation: polymer kinetics, astrophysics, aerosols, biological phenomena such as 

animal grouping, blood cell aggregation, etc. Observe that particular choices of 

ak, k ---- 1, 2 , . . . ,  N in (1.2) lead to a variety of known stochastic models. For 

example, when ak = / ~ / k ,  k = 1, 2 , . . . ,  N,/~ > 0, (1.2) becomes the widely known 

Ewens sampling formula that arises in population genetics. 

Following [5], we view CFP as a continuous-time Markov process on the 

state space Etg. Formally, a CFP is given by the rates r and r of the two 

possible transitions: coagulation and fragmentation respectively. Namely, 

r  2 < i + j < N is the rate of merging of two groups of sizes i and j 

into one group of size i + j ,  and r  2 < i + j < N is the rate of splitting of 

a group of size i + j into two groups of sizes i and j .  We consider the class of 

CFP's for which the ratio of the transition rates has the form 

(1.4) r _ a++j i , j  : 2 < i + j < N ,  
r j )  a+a 3 ' - _ 

where ak > 0, k = 1 , . . . ,  N are given parameters of the process. Owing to (1.4), 

the condition of detailed balance holds and, consequently, the CFP considered is 

reversible with respect to the invariant measure (1.2). 

Letting N --+ oc, we will be concerned with the relationship between two 

infinite sequences {an}~ and {cn}~, Co = 1. 
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It was conjectured in [5]* that the existence of the limit 

(1.5) lim an - - > 0  
n--+c~ a n +  l 

implies the existence of the limit 

(1.6) lira c~ - - > 0 .  
n--+cx) Cn~  l 

Apart from the fact that the conjecture is a challenging mathematical problem, 

one can see from [5] that  it also has a direct significance for the stochastic model 

in question. First, if the limit (1.6) exists, then a variety of functionals of the 

process (e.g., the expected values and variances of finite group sizes), as N --+ co, 

can be explicitly expressed via this limit. Next, by formula (4.16) in [5] we have 

that 

(1.7) cov(nk, n / ) - -a (k)a(1)  ( eN-k-I CN-kCN-l ~ 
\ C N  ( ~ N ) ~ ]  ' 

k r  k + l < N .  

Thus, the validity of the conjecture will imply that  at the steady state the 

random variables nk, nz, k r l become uncorrelated, as N --~ co. This fact 

incorporates into the assumption of independence of sites in mean-field models, 

as N ~ oc, that is commonly accepted in statistical physics. 

Another motivation for our study is provided by a quite different field, known 

as random combinatorial structures (RCS's). The connection of CFP's  to this 

field is based on the following observation made in [5]. Let Z~, i = 1 , . . . , N  

be independent Poisson random variables with respective means ai > 0, i = 

1 , . . . , N .  Then it is easy to see that the distribution #N admits the following 

representation: 

(1.8) 
N 

#g( ' l )  = Pr{Z,  = n l , . . . ,  ZN = aN[ ~-~iZ, = N}, 
z=l 

/]----- ( / t l , - . . , n N )  e ~N" 

It turns out that (1.8) is the general form of distributions arising in a variety 

of RCS's. This is explained in [1], [2] and [11]. (Theorem 1, p. 96 in [1] gives 

a rigorous proof of this fact.) The simplest example of a RCS is a random 

* Added in proofs: The conjecture was recently proved in the setting of general 
additive number systems by J. Ball and S. Burris in Asymptotics for Logical 
Limit Laws, preprint, 2001. 



262 G . A .  FREIMAN AND B. L. GRANOVSKY Isr. J. Math.  

choice from N! permutations of N objects. Cauchy's formula for the number of 
N permutations having nk cycles of length k, k = 1 , . . . ,  N, where Y~k=l knk ~-- N ,  

tells us that the probability of picking a permutation with this property is given 

by (1.2) with ak = k -1, k = 1 , . . . , N  and CN = 1. 

In view of this, one can translate the preceding reasoning in the context of the 

Conjecture, into the language of RCS's. 

Our paper is devoted exclusively to the study of the asymptotic behaviour, as 

n --+ oo, of the quantity c~, defined by (1.3). 

The asymptotic formula for cn established in our paper proves the Conjecture 

for a wide class of parameter functions a: a(k) = a k ,  k = 1, 2 , . . . .  We mention 

also two other applications of our result related to global characteristics of CFP's  

(=RCS's). 

(i) For a given n, denote by vn the mean value of the total number of different 

groups at the equilibrium of CFP (=components in a RCS). It follows from (4.15) 

in [5] that 

(1.9) vn = ~ ak cn-k 
Cn k = l  

(ii) Denote by p ~  the probability at the steady state of the creation of a cluster 

(= component in a RCS) of infinite size. It was shown in [5], p. 462, that  the 

condition 

(1.10) lira (v,~ - v[~,,~]-l) > 0 
? '~--+ O 0  

for some 0 < c~ _< 1 is sufficient for p~  > 0. (Here [.] is the integer part of a 

number.) 

Thus, with the help of the asymptotic formula for cn, one can reveal the asymp- 

totic behaviour of vn as n --+ oc and, consequently, find the limit in (1.10). The 

latter will answer a question which is common in statistical physics. 

Also, we want to point out that determining the asymptotic properties of 

partition functions for interacting particle systems is a difficult mathematical 

problem widely discussed in statistical physics (see, e.g., [15]). 

2. Descr ipt ion of  the  m e t h o d  and a sketch of  its h is tory 

We assume a~ > 0, n = 1, 2 , . . .  and that the following limit exists: 

(2.11) lim a,~ : = R ,  0 < R < c c .  
n--+c~ a n +  l 
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Thus the power series in x, 

(2.12) S(x) :: ~ an xn, 
n = l  

has radius of convergence R and it converges in the complex domain 

D C_ {Ixl < R}. 

Then (see [5]), g ( x )  -- e s (x) ,  x C D is the generating function for the sequence 

{c~}~ defined by (1.3). Namely, 

oo 

(2.13) g ( x )  = e s(~) = ~ c~x  ~, x C D,  

n-~O 

and, moreover, the series (2.12) and (2.13) converge in the same domain D. 

The method we use here for deriving the asymptotic formula for c~ goes back 

to A. Khintchine's pioneering monograph [10]. In [10] Khintehine developed the 

idea of expressing values of quantum statistics via the probability function of 

a sum of correspondingly constructed independent integer-valued random vari- 

ables. Subsequent implementation of the local limit theorem resulted in the 

method of the derivation of asymptotic distributions of quantum statistics. In 

[10] this method was systematically applied to systems of photons and some other 

models. The method was further developed by A. Postnikov and G. Freiman (see 

[14] for references) who applied it to analytic number theory. In particular, G. 

Freiman formulated a local limit theorem for some asymptotic problems related 

to partitions. A general scheme for the derivation of asymptotic formulae for 
these kind of problems was outlined by G. Freiman and J. Pitman in [8], [7] (see 

also [4] for references.) 

A similar approach, also based on the implementation of the local limit the- 

orern, has been developed independently for the last fifteen years in the theory 

of RCS's. A very good exposition of this direction of research is given in the 

recent monograph [11] by V. Kolchin. We will explain briefly the basic difference 

between the problem addressed in the present paper and those in [11]. In the 

context of the generalized scheme of allocation that  encompasses a variety of 

RCS's, S and g are the generating functions for, respectively, the total number 

of combinatorial objects of size n and for the number of such objects possess- 

ing a definite property. In this setting it is assumed that the expression for the 

function g is known explicitly. Based on this, the combinatorial quantity in ques- 

tion is expressed via the probability function of a sum of i.i.d, discrete random 

variables, distributed according to a probability law that depends on the given 
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values of {cn}~.  Such a scheme is applicable,  for example,  to the investigation 

of the asympto t i c  of the number  Fn,N of all forests of N nonrooted trees having 

n vertices, in which case cn = (n!)-ln n-2, n = 1, 2,.... 
First,  w.l.o.g, we assume throughout  the paper  tha t  the c o m m o n  radius of 

convergence of the series (2.12) and (2.13) equals 1. This  is due to the fact tha t  

taking in (1.3) 5j = RJaj, j = 1 , . . . ,  N ,  it follows from (1.1) tha t  5N = RNc~v. 
The  above assumpt ion  makes  the limn_~(a,~/a,~+l), if it exists, equal to 1. 

Our  s ta r t ing  point is the following representat ion of c,~. 

LEMMA 1: 

ape . . .  

(2.14) c ,  = e '~~ u = = k=0 k! ] • 1, 2, 

for any real a .  

Proof" I t  follows from (1.3) tha t  cn depends only on al , . . . ,an,  which means  

tha t  the first n + 1 te rms  of the Taylor  series expansions of the two functions 

(2.15) g(x) = e s(x) and gn(x) : =  e ~ ] ~ - - 1  alxt, x E n 

O 0  are the same,  i.e., ck = c~,,~, k = 0 , . . . , n ,  where {ck,,~}k=o is the sequence 

related to the function g,~. For a fixed n, the series expansion of the function 

gn(x) converges for all x. So, we can set 

(2.16) x = e - ~ + 2 ~ ,  

for some real ~ and c~. 

Then  we have 

/0 /0'r  (2.17) gn(x)e-2""~'doL---- tkd.~=oi~k,n~ ) doL = c.e -n<,. 

The  last equali ty is due to the fact tha t  

jile2~amdo~= { 1' if m=O'  
(2.18) 0, if m # 0 ,  m C Z .  

Finally, subst i tu t ing 

"l--In 1_~i ( k~_ ~ (a~t)k) (2.19) gn(x) = .,..,e a`x' -- 
l = l  l = l  - -  

and (2.16) in the LHS of (2.17) we get the claim. | 
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Our next step will be to give a probabilistic meaning to the expression (2.14) 

for ca. 

We introduce the following notations: 

(2.20) = Z 
l--1 

a k e - o l k  
l = 1 , . . . , n ,  (2.21) Plk - k!exp(a le_~l  ) , 

(2.22) 

(2.23) 

k = 0 , 1 , . . . ,  

o o  

e 2~iod k ~,(c~) = Plk , c~ e R ,  
k=0 

n 

l= l  

Now (2.14) can be rewritten as 

(2.24) cn = e'~~ e sn(e-~) ~(c~)e-2~i~'~d~. 

The fact that for a given l (1 < I < n) ,  Plk, k = 0, 1 , . . .  is a Poisson probability 

function with parameter ale -~'z, suggests the following probabilistic interpreta- 

tion of the integral in the RHS of (2.24). 

get X 1 , . . . ,  Xn be independent integer-valued random variables defined by 

(2.25) P r ( X l = I k ) = p ~ k ,  l =  l , . . . , n ,  k = O ,  1 , . . . .  

Then ~(~) defined above is the characteristic function of the sum Y = X1 + 

�9 " + X n  and we have 

]i 1 (2.26) ~(c~)e-2~i'~'~da = Pr(Y = n). 

Now (2.24) can be viewed as an analog of the aforementioned Khintchine 

representation for ca. 

It is well-known [9] from the classical theory of limit distributions of sums of 

independent integer-valued random variables that,  under certain conditions on 

distributions of the variables, a local limit theorem is valid. 

In our subsequent study, the free parameter a will be taken depending on 

n: a = an.  By (2.25) and (2.21) this means that  the probability law of each of 

the n random variables Xl, l = 1, 2 , . . . ,  n depends on n. Therefore, to compare 

with the classical case, we will be dealing here with a triangular array of random 
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variables. For this case, general necessary and sufficient conditions for validity of 

the local limit theorem are not known. For some cases results in this direction 

were obtained in [13] and [3]. In the first of these two papers a sufficient condition 

was established (see ([13], Theorem 2, condition III) in tile case of an array of 

general lattice random variables. It  can be verified that  this condition (which 

can be viewed as a version of the celebrated condition of asymptotic  uniformity) 

fails for the class of parameter  functions a considered in our paper. The second 

paper studies exclusively the case of the triangular array of trinomial random 

variables. 

Most of this paper is devoted to the proof of the local limit theorem in the 

above setting. Namely, we will demonstrate that  under certain conditions on the 

parameter  function a 

(2.27) Pr (Y = n) ~ (2~B2) - l /2e  -(Mn-n)~/2B~, as n --~ oc, 

where Mn = E Y  and B 2 = Var Y. 

3. P r o o f  o f  t h e  l oca l  l imi t  t h e o r e m  

In order to prove (2.27) we have to find the asymptotic formula, as n -4 r for 

the integral in the RHS of (2.24). We will denote constants in the sequel by % "~i, 

i - -  1 ,2 , . . . .  

First, we obtain the explicit expressions for the quantities Mn and B 2. Expres- 

sions (2.25) and (2.21) say that  l - l X t ,  l -- 1 , . . . ,  are Poisson (ale -el)  random 

variables. So, we have 

(3.28) E X I  = lale -('l, l ---- 1 , . . . ,  n, 

(3.29) Var Xl = 12ale - l ' ,  l =- 1 , . . . ,  n. 

This gives 

(3.30) Mn =~-~la le  - l~  n = 1 , 2 , . . . ,  
l = l  

n 

(3.31) BX= 12a e-% n= 1,2,.... 
/=1 

It  follows from the preceding discussion that  the representation (2.24) holds for 

any real ~. Our next result shows that  ~ can be chosen so that  the exponential 

factor in the RHS of (2.27) equals 1, for any n = 1, 2 , . . . .  
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LEMMA 2: The equation 

(3.32) ~ la/e - /~  = n 
/ = 1  

has a unique solution a = a,~, for any n = 1, 2 . . . . .  

Proo~ The assert ion follows immedia te ly  f rom the assumpt ion  a/ > O, l = 

1 ,2 , . . . .  II 

Remark:  The above choice of the free pa rame te r  a makes  the probabi l i ty  of the 

event {Y = n} large, as n --+ oc. The  same idea is widely used for approx imat ion  

of RCS's  by independent  processes (see [1] for references). In s tat is t ical  physics, 

such a way of choosing a free pa rame te r  for es t imat ing  averages is known as the 

Darwin-Fawler  me thod  developed in the 1930's (see, e.g., [6] for references). 

I t  follows from (3.32) tha t  if the series oz ~-~/=1 la/ converges, then an <_ 0 for 

sufficiently large n, while in the opposi te  case the sign of an depends on the 

behaviour  of S'n(1), as n --> co. However, in bo th  cases the following basic 

p roper ty  of an,  n = 1, 2 , . . .  holds. 

LEMMA 3: L e t  

(3.33) lira an _ 1. 
n--+cx) an+  l 

Then l i m n ~  an = O. 

Proof: By the definition of crn, 

n 

(3.34) n - l  Z l a t e - / ~  = 1 '  n =  l , 2 , . . . .  
l= l  

Denote  b / =  l a / >  0, I = 1, 2 . . . .  Based on (3.33) let N = N(e) ,  where e > 0 is 

such tha t  

(3.35) l - e <  bl+l < l + e . ,  for a l l l > _ N .  
- b l  

Consequently,  

(3.36) (1 - c) l -NbN <_ bl <_ (1 § e) / -NbN,  l > N.  

Now suppose tha t  l i m k _ ~  ank = a ,  for some subsequence nk --+ +oc, as 

k --+ co, where lal _< co. Let first - 9 c  _< a < 0; then taking 0 < e < 1 - e a/2 we 
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nk nk 

n;~b,e- '~~ >_ (1 - ~ ) - ' % n ;  1 ~ [ ( 1  - ~)~-~~ -~  ~ ,  as k -~  ~ 
l = l  l = N  

since 
( 1  - e)e-a"k > e~/2-~"k --4 e - a / 2  > 1, 

If now 0 < a _< c~, then for 0 < e < e a/2 - 1, 

nk 

n; 1 ~ b,e -l~"k 
/=1 

(3.38) 

as k - +  co. 

N nk ) 

<<_n~ 1 E b l e - l a " k  + ( l  + e ) - - N b N  E ( ( l  +e)e - -a"k) l  --+0, 
l=1 l = N  

as k -4 c~, 

since in this case e -~/2 < 1. Both  (3.37) and (3.38) contradict  (3.34), which 

implies tha t  lim SUPn_~ an --= lim in fn - .~  an = O. | 

In what  follows we will assume tha t  a = an,  as defined by (3.32). Our next  

lemma provides the expression for the integrand in the LHS of (2.26) for small 

values of a.  

LEMMA 4: For a f ixed n and a = an,  

(3.39) ~p(a)e -2~'an = exp( -2~r2a2B 2 + O(a3p3)) ,  

where P3 = p3(n) = E L 1  l~a, e - '~~  n = 1, 2 , . . . .  

Proof." 

a s  o~ ~ 0, 

and 

(3.41) ~o(a) = exp ale - l~" (e  2~iat - 1 , a E R .  

Finally, subst i tut ing in (3.41) the Taylor expansion (in a )  

(3.42) e 2~*~z - 1 = 2 r i a l  - 21r2a2/2 + 0(a313) ,  as a --~ 0, 

which holds uniformly for l > 1, and making use of the definition (3.32) of an, 

proves (3.39). 

By (2.21) (2.23), 

oo (ale_a.le2~r,at)k = exp(al e- la"  ( e2~ial _ 1)), a e R 
(3.40) ~z(a) = E k!exp(a te - l , ,n )  

k----0 
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Observe that uniformity (=the constant implied by the term O(aa/3) in (3.42) 

does not depend on l) is due to the fact that for any real c~, 

d s 
e 2meal < (27r)s/~, s = 1,2,.  | _ , . .  

Now we are prepared to deal with the central objective stated in the beginning 

of this section. Denote 

(3.43) T = T(n)  = qo(c~)e-e~*'~nda, n = 1,2 . . . .  

The integrand in (3.43) is periodic with period 1. So for any 0 < Cto <_ 1/2, 

the integral T can be written as 

(3.44) T = T1 + T2, 

where I'1 = Tl(c~0; n) and T2 = T2(c~o; n) are integrals of the integrand in (3.43) 

over the sets I -a0 ,  +ao] and [-1/2,-C~o] U [C~o, 1/2], respectively. Following the 

idea of [7], [8], we will first show that for an appropriate choice of 50 = C~o(n) the 

main contribution to T, as n --+ oc, comes from 7'1. Then, estimating T1, under 

c~0 = so(n),  n ~ ec we will get the desired asymptotic formula (2.27). 

It is clear from Lemma 4 that the asymptotic behaviour of the integral T1 as 

n -+ ec is determined by the asymptotics of the three key parameters an, B 2 

and P3. 
First, we address the problem for the class of parameter functions a of the form 

(3.45) a s = j p - 1 ,  j = 1 , 2 , . . ,  f o r a g i v e n p > 0 .  

It follows from the definition of the above three parameters that in the case con- 

sidered the problem reduces to the estimation of sums of the form V '~ :ke-aJ z-~j= 1 2/ 
k > -1 ,  as n --+ ec. 

To do this we apply the integral test for the function 

(3.46) f ( u ) = ( a u ) k e  - a ' ,  u>_O, a>_O, k > - l .  

In the case k > 0 the function f is strictly increasing on [0, ka  -x] and is strictly 

decreasing on [ka -1, +oo). So, applying the integral test separately on each of 

the above intervals we have in the case considered 

(3.47) /o n f(~)d'lz -]- , ~ l f ( k o  " -1 )  ~ f ( j )  ( f(,iz)d'~ + , ' ~2f (ko- -1 ) ,  

j = l  
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where the constants ~'1, '~2 depend on k only and f (ka -1) = kke -k. 
If now - 1  < k < 0, then the function f is strictly decreasing on [0; +oc) and 

the integral test gives 

f n + l  n fO n (3.48) f(u)du < E f(J) <- f(u)du. 
J1  j = l  

Note also that  for any a, b > 0 

(3.49) l (u)du = ck u%- Ud  = z%- dz. 

Then, combining (3.46)-(3.49) we arrive at the desired asymptotic estimate: 

n 

(3.50) E j k e  -~ 7 ak+l '  a s 0 < a - - + 0 ,  n--+c~, and liminfnan_~ >0"  
j = l  

In particular, if na --+ co, then the constant 3, in (3.50) can be found explicitly: 

n 
P(k + 1) 

(3.51) E jke-~J 
o.k+ 1 

j = l  

where F is the gamma function. 

Further, we will write *(n) • n ~ if there exist positive constants 9'1, 9'2, s.t. 

")'in ~ < o(n) < ~/2n ~, for all sufficiently large n. 

Extending (3.45) we consider now the class of functions a satisfying 

(3.52) ajx jP-1 ,  a s j - + o c  f o r a g i v e n p > 0 .  

An obvious variation of the preceding argument gives in this case the following 

analog of (3.50): 

(3.53) 
n - 1 

E a3jle-~'3 ~ grP+l' as 0 < a ~ 0, n ~ oo and liminfnan_~ > 0, l _> 0. 
j = l  

This immediately implies 

L E M M A  5:  

(3.54) 
(3.55) 

Let the function a obey (3.52). Then, as n --+ oo, 

O" n X n -1/(p+I) 

B~ ~ n (p+2)/(p+I)  

and 

(3.56) P3 • n (p+3)/(p+I)- 
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Proof: 

1 
(3.57) n • a,+1,~, as n --+ oc 

By the definition of an,  Lemma 3 and (3.53), in this case 

and, consequently, 

(3.58) a ,  • n -1/(p+1), as n ~ co. 

Now the last two assertions follow from (3.53). | 

At this point  we are prepared to estimate the integral 

(3.59) 

LEMMA 6: 

(3.s0) 

Proof: 

(3.61) 

r a 0  
T1 ---- Tl(OZ0; n) = ] - a o  ~~176 

~.(p+2)/2 �9 Let the function a obey (3.52) and a0 = v~ logn,  p > 0. Then 

T l ( a o ; n )  ~ (2~rB2) -1/2, as n -~ oo. 

By (3.54), a0 -~ 0, as n -+ oc. So, making use of (3.39) we obtain 

f/o T1 = exp( -2r r2a2B~ + O(o~3p3))da, as n -+ oc. 
OL o 

Further,  under the condition (3.52), it follows from Lemma 5 tha t  the above 

choice of a0 provides the following two basic relationships between the parameters  

B 2 and P3: 

2 2 (3.62) lim aoB n = lim log2n = + ~  
n ' - ~ O O  n - - ~  (X3 

and 

lira 33p3= lira a p/21og 3 n = 0 .  (3.63) 

Since timn-~oo 33p3 = 0 for all a E [ - a o ,  ao], (3.61) and (3.62) imply 

exp(-z2 /2)dz 
27r Bn  a - 27r aoBn 

(3.64) ~ 1/2vG   , as I 

Taking ao as in Lemma 6, we write 

(3.65) T2 = T2,1 + T2,2, 
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where 

(3.66) 

G. A. F R E I M A N  A N D  B. L. G R A N O V S K Y  Isr .  J .  M a t h .  

f 
l/2 

T2,1 = T2A(a0; n) := ~(a)e-2'~i~"da 
d o t  0 

and T2,2 is the integral of the same integrand, but over the set [ -1 /2 ,  ao]. 

In view of (3.65) and the fact that ~ ( - a )  = ~o(a), a E R, the rest of this 

section is devoted to an estimation of the integral T2,1, as n --+ cx~. Our starting 

argument will be the same as in [8]. It follows from (3.41) that 

(3.67) [~o(a)l = exp - 2 E a j e - J a ~  s i n 2 r a j  , a E R. 
j = l  

Denote by [x] and {x} respectively the integer and fractional parts of a real 

number x, and by I]x]l the distance from x to the nearest integer, so that  

{x}, if {x} <_ 1/2, 
(3.68) IIxII = 1 -  {x}, if {x} > 1/2. 

We will make use of the inequality 

(3.69) s i n 0 >  29, 0 < 9 <  ~r - - .  

- -  71" - -  --  2 

Since sin 2 r x  = sin 2 r]]x]] for any real x, it follows from (3.69) and (3.68) that 

for all real x, 

(3.70) sin 2 ~rx >_ 4]]xl[ 2. 

Hence, in view of (3.67) and (3.66) we have to estimate the sum 

n 

(3.71) Vn(a) := E aje-J"n[]aj]]2, ao <_ a < 1/2. 
y = l  

LEMMA 7: Let the function a obey (3.52). Then 

(3.72) Vn(a) >_ ~ log 2 n, 

where q, > 0. 

Proo~ Take 31 = al(n) = cr,~ 

a c [ a0 ,1 /2 ] ,  as  n - ~  oc, 

> a0(n), as n --+ co, and split the interval 

[a0; 1/2] into two disjoint subintervals I1 := [ao, 31] and I2 : =  (or1, 1/2]. We plan 

to prove the assertion separately for a E I~ and a E I2. 
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It is clear from the definition (3.68) that  

IIajll = a j ,  j _< 1/2c~1, c~ E I1. 
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In view of the fact that,  by Lemma 3, ( 2 a l )  - 1  -+  OO, as n --+ Oo, while ( a l ) - l a ,  = 

1, n = 1, 2 , . . . ,  we apply (3.53) with l = 2 to obtain 

~2/~p+2 ~ log2 n, c~ E 11. (3.74) Vn(a) >_ 0~2o E ajj2e -j~" x ,~o/~,, 
l__~j<(2al) -1 

INTERVAL 12. For a given integer n and a given a E /2  define the set of integers 

Q(a) -- Q(a ;n )  = {1 < j < n: [l(~jl I > 1/4}. 

It is clear that  

Q(a)={l  ~_j<n:k+l/4<_c~j~k-~3/4,  k=O, 1,...,} 
(3.75) [(4~n--3)/4] 

= U 
k=O 

where Qk(c~) denotes the set of integers {j : (dk + 1)/4c~ ~ j ~_ (dk + 3)/4~}. 

Observe that for any a E I2 and k _~ 0 the set Qk(c~) is not empty, since in 

this case (dk + 3) /4a  - (dk + 1)/da _> 1. 

This yields the following estimate of the sum Vn(a), a E 12: 

[(4an--3)/4] 

(3.76) Vn(a) ) 1/16 E aje-Ja" = 1/16 E E aje-~"" 
jeQ(a) k=o 3~Qk(~) 

We now assume that the asymptotic inequality (3.52) holds for all j _> N. This 

means that  (3.52) is valid for all j E Qk(a) whenever k > max{0; (daN - 1)/4} 

=: K ( ~ ) .  

We agree, with an obvious abuse of notation, that for a real u, Q~(a) is the 

interval 
4 u + 1  4 u + 3 ]  

~la ' 4a " 

Observe that for all sufficiently large n, we have 0 < c~-lau < 1, a E I2, while 

nO" n --+ 0(3. 

Applying now the integral test to the double sum in the RHS of (3.76) gives 

Vn(~) )_ "/ du vP-l e-W'~dv 
K(~) ,,cQ~(,~) 
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(3.77) 

where we denote 

l f(4"n-~)/4 f,, = 7--~ du vP-le-~dv 
(~n J g(a) ve(a.Q~(a)) 

---al f n ~ , - ~ / 2 ~  [~v1~,-114 vp- l e-V dv du >_ 
70"n  J g l  (o~) Jav/a,-314 

1 
X ~-p-, p > 0, a s  n - +  (:x~ 

o- n 

4 K ( a ) + 3  [ 4 u + 1  4 u + 3 1  
Kl (a )  4a an  and a n ( q ~ ( a ) ) =  an 4 - - - - a - - , a n ~ j .  

Note that the last inequality in (3.77) is obtained via the change of the order of 

integration. Finally, (3.77), (3.54) and (3.74) prove the claim. | 

The last statement of this section is the desired local limit theorem. 

THEOREM 1: Let the function a obey (3.52). Then 

(3.78) T = Pr(Y = n) ~ 1 / / ~ ,  as n --+ cx~. 

Proof" By Lemma 7 and (3.66), (3.67) and (3.65), we have 

(3.79) T2 <_ e -271~ as n --~ cx~, 

where ~' > 0. In view of (3.64) and (3.44) this proves (3.78). II 

We provide now an extension of the field of validity of the above local limit 

theorem. We agree to write n zl -~ .(n) ~ n ~ ,  0 _< ~1 _</~2, if there exist positive 

constants 71,~/2, s.t. ~ln zl ~ .(n) < 72n z~, for all sufficiently large n. 

For given 0 < Pl _< P2 define the set 9r(p~,p2) of parameter functions a = a(j),  

j c R +, obeying (3.33) and the condition 

(3.80) jp~-i  ~ a(j)  ~ jp~-l,  0 < Pl <_ P2. 

COROLLARY 1: For an arbitrary p > 0 and 0 < e < p/3 the local limit theorem 

(3. 78) is valld for a11 parameter functions a e 9C(2p/3 + e; p). 

Proof." It is clear from the preceding results that for all a E .T(pl;p2), we must 

have, as n -~ ec, 

(3.81) n -1/(p1+1) -< an "2<_ n -1/(p2+l) 

o'; (p1+2) __ B~ _--< a;(p~+2), a ;  (p1+3) _-< Pa -< a~-(p~+3). 
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Therefore  sett ing, as in L e m m a  6, C~o = (B,~) -1 log n, gives 

(3.82) 

O/03fl3 ~ 73(1og  3 n)ana(m+2)/2an (p2+3) = ~/3(1og 3 n)5 r(3p'-2pu)/2 -~ O, as Tt --} (N3, 

provided 3pl - 2p2 > 0. 

Thus,  in the case a �9 9V(pl;p2), where Pl,P2 : 3p l /2  > P2 _> Pl > 0, L e m m a  6 

is valid. The  proof  of L e m m a  7 for this case goes along the same lines, wi th  an 

obvious replacement  of (3.77) by 

(3.83) 1 / a  m _~ Vn(c~) ~_ 1 / a  p2, c~ � 9  

Combining  these results proves the validity of the local l imit theorem for the 

class of functions a in our s ta tement .  | 

For our subsequent  s tudy we will need the following extension of (3.78). 

COROLLARY 2: Under the conditions of Corollary 1, 

(3.84) P r ( Y  = n + h) ~ P r ( Y  = n) ,-~ 1/V/2~rB~, as n --+ oc, 

for a fixed real h. 

Proof: 

(3.85) 

By (2.26), 

f 
l/2 

T(h;  n) := P r ( Y  = n + h) = (p(a)e-2~r~a(n+h)da, 
J -1 /2  

where the characteris t ic  function ~(c~) is given by (2.22) and (2.23). By  L e m m a  

4, we get 

(3.86) ~(c~)e -2~r'c~(n+h) = exp ( -27r232B 2 - 27ric~h + 0(33p3)), as c~ --+ 0, 

where P3 is defined as in (3.39). Next,  let ao = ao(n) be as in L e m m a  6. Denote  

(3.87) Tl(h;  n) =/?oo ~( a) e- 2~(n+h ) da. 

L e m m a  6 and (3.86) imply for a fixed h �9 R 

(3.88) 2~l(h;n) ~ 1 / ~ ,  as n --+ oc. 

Now it is left to es t imate  the integral 

/1/2 /_-~o 
(3.89) T2(h; n) :-- (fl(a)e-2ma(n+h)da + ~(a)e-2~ric~(n+h)da. 

~'ao 1/2 

Since the function ~o(a) here is the same as in (3.67), the es t imate  (3.79) is valid 

also for ~b2(h; n), which together  with (3.88) proves the s ta tement .  | 
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4. T h e  a s y m p t o t i c  fo rmula  for cn 

By virtue of (2.24) and Corollary 1, we obtain the following asymptotic formula 

for cn valid for all parameter functions a E Jr(2p/3 + e;p), p > 0, e > 0: 

(4.90) cn ,-~ ~ 2 - ~ e x p  nan + a~e -3~n , as n -4 oc. 
V/27rB~ j=l 

Let aj • j p - l , p  > 0, as j -4 oc. Then by Lemma 5, (3.53) and Example: 
(4.90), 

(4.91) log cn x 2n p/(p+I) _ _1 log 21r - - P  + 2 log n, as n -4 co. 
2 2p+ 2 

In particular, if aj = jp-1, p > 0, j -- 1, 2 , . . . ,  then using (3.51), the constants 

in (3.54) and (3.55) can be found explicitly and we obtain, as n -4 oc, 

n ))-1/(P+1) 
( 4 . 9 2 )  ~ 1 ' 

(4.93) B2 "~ p ~- 1) ] r (p + 2), 

(4.94) nan ~ (F(p + 1)) 1/(p+l), 

F n 1/(p+1) 1)) 1/(p§ np/(p+l) 
(4.95) ~-~a3e - j ' '  (P) ( F ( p ~  1)) = P-1 (F(P+ 

j = l  

Hence, (4.90) gives, as n -4 co, 

(4.96) log cn ~A(p)n  p/(p+I) - ~ log 2r  

1 
- - log r(p + 2), 

2 

p + 2 (log n 2p+ - l o g r ( p  + 1)) 

where A(p) = (1 + p-1)(F(p + 1)) 1/(p+1). 

Remark: For the two cases aj = const and aj = j ,  j -- 1, 2 , . . .  the first (= the 

principal) term in the asymptotic formula (4.96) was obtained in [5] by solving 

for large n the corresponding difference equations (4.101) below. Note that this 

approach is not applicable even for the class of parameter functions aj = jP-1, 

p > 0 .  

With the help of (4.90) we are able to address the question on the validity of 

the Conjecture stated in Section 1 (see (1.5) and (1.6)). 
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ASSERTION: The conjecture is valid for all parameter functions a E ~ (  ~ + e; p), 

p > 0 ,  e > 0 .  

Proo~ It is clear from (1.3) that  the expression for e~+l can be written in the 

following way: 

(4.97) cn+l = an+l + C ' n + l ,  

where 5,~+1 can be viewed as the value of cn+l (given by (1.3)) when an+~ = 0. 

Next, recall that the representation (2.24) is true for any real a and all n = 

1, 2 , . . . .  We now apply this representation for the particular case an+l = 0. By 

(2.21) and (2.25), in this case Pr(X~+l = 0) = 1. So, combining (2.24) and (2.26) 

and taking a = an gives 

( ) (4.98) c ,+l  = exp (n + 1)a,  + E aje-J'~" Pr(Y = n + 1), 
3 = 1  

where the random variable Y is defined as in Section 2. 

Substituting expression (4.98) in (4.97) and applying (4.90) and Corollary 2, 

we obtain 

(4.99) c~+l ~ e~" + a~+___ll, as n --~ c~. 
Cn Cn 

In view of the assumption (3.33) and Lemma 3, to complete the proof we have 

to show that  

(4.100) lim a_~_~ = 0. 
n--+oo e n 

To get this result we will implement the difference equation (see [5], p. 460 for 

references) derived from (2.13): 

co = 1, cl = a l ,  
n 

(4.101) (n + 1)en+l = E ( j  + 1)aj+lCn-j, rt = 1, 2 , . . .  
j=o 

This gives, for a fixed k > 1, 

n 
> x-" (J + 1)aj+,c _j 

(4.102) 
an+l ~=n-k s (n + 1)an+l 

Consequently, by (3.33) and (4.97) 

(4.103) l iminf c,~+l >_ co + cl + . . .  + Ck >_ 1 + al + . ' .  + ak, 
an+l 
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for any fixed k. 

The desired conclusion now follows from the fact that  if a E $ ' (2p/3 + c;p) 

p > 0, e > 0, then 
oo 

(4.104) E aj = oc. I 
j : l  

CONCLUDING REMARK. Our asymptotic  formula (4.90) is restricted to the case 

a C $ ' (2p/3 + e;p), p > 0, e > 0. The reason we require p > 0 comes from the 

fact that  the local limit theorem we proved assumes convergence to the normal 

law only. This type of convergence is guaranteed if (3.62) and (3.63) hold, or, 

equivalently, if the parameters  P3 and Bn obey the condition 

(4.105) lim P3 ,~--~ ~3u3 = 0. 

Based on the reasoning preceding (3.28), it is not difficult to show that  the 

quantity P3 has the following meaning: 

(4.106) P3 = ~ E ( X I  - E X I )  3. 
l = l  

In effect, denoting by Ul the Poisson (Al := ale -a t )  random variable, we have 

(4.107) E ( X l  - E X I )  3 = 13E(Uz - EUl)  3 =/3Al, 

where the last step is due to the known property of the third central moment  of 

the Poisson distribution (see, e.g., [12], p. 33). 

Expression (4.106) explains that  (4.105) is Lyapunov's sufficient condition for 

convergence to the normal law in the central limit theorem. To demonstrate that  

for p < 0 the condition (4.105) fails, we consider the case aj = j - 1  j = 1, 2 , . . . .  

It  is easy to see from (3.32) that  for this case an -- 0, n -- 1, 2 . . . .  Consequently, 

we have, as n --~ ~ ,  B~ ~ n2 and P3 ~ n3, which gives l i m n ~ ( p 3 / B ] )  = 1. 

The above discussion suggests that  for p _< 0 one can expect convergence to 

other stable laws. The study of this case will require a quite different estimation 

technique. 
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